STEADY HEAT-CONDUCTION PROBLEM FOR A
DOUBLE CYLINDER
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. An analytical solution of the problem stated in the title is obtained for various conditions at
the ends of the cylinder. The method of asymptotic solution of boundary-value problems for
elliptic equations in thin domains is translated to the case of boundary conditions of the third
kind.

In many calculations of temperature distributions one is confronted with bodies of complex configur-
ation, and their direct analysis is rather complicated. Of enormous practical significance are investigations
of temperature fields in composite and layered bodies such as the pipe fittings of liquid-metal systems with
structural members of complex geometry [1]. The existing thermal calculations of complex bodies are
carried out by the one-dimensional approximation with the introduction of an effective thermal conductivity.
The possible domain of application of the one-dimensional solutions and the error have only been estimated
for solid cylinders {2]. Similar estimates and calculations have essentially never been undertaken for
double cylinders. However, the exact solutions for double cylinders are applicable only for a limited
category of problems involving boundary conditions of the first and second kind. One-dimensional theories
can be used for a double cylinder if one dimension is preferential over the others for the element investi-
gated. If the one-dimensional approximation does not have sufficient accuracy, a multidimensional problem
is formulated on the basis of information from the one-dimensional approximation. The design of piping
systems is fraught with practical situations in which it is acceptable to limit the problem to small correc-~
tions to the one-dimensional theory without resorting to solution of the complete problem.

The method of boundary-layer corrections has been applied [3] to a boundary-value problem for a
second-order elliptic equation in a thin domain with boundary conditions of the second kind on the surface.
T An analysis of the indicated method shows that it can also be applied to
problems involving conditions of the third kind for a sufficiently small co-
efficient of the sought function. The solution is found in two iterative pro-
cesses; in the case of conditions of the third kind the criterion for solvabil -
ity of problems of one of the processes turns out to be the equation of the
corresponding one~dimensional theory, and the subsequent iterations make
it possible to find successive corrections to the one-dimensional solution.
Below we give a solution of the heat-conduction for a two-layered cylinder
by the method of boundary-layer corrections.

|

We consider the steady-state temperature distribution in a double
cylinder of radius r, and length | with a constant heat-transfer coefficient o
on the lateral surface. The cylinder is composed of two coaxial sections
with different heat conductivities A (see Fig, 1). The lower end of the double

0 - r cylinder is maintained at a constant temperature T.
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g The dimensionless excess temperature § obeys the equation
Fig. 1. Schematic of th A
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and the boundary conditions
08

r lr=r,

ﬁ‘f=0 finite; - }L'Z = U'ﬂ:lr:rg; ﬁjx:O = 1 (2)

If we assume that

[ O, 0<r<r,

L0, rn<r<r,

g =

the problem can be reduced to the solution of two equations for domains.I and II:

G 09, j . 0§, .
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with conditions for matching of the temperature and heat flux at the interface of the two cylinders:

; a9, 0%,
ﬁl{r-r = ﬁ"‘ =r,' M __“lz = )‘7 21
=r r=r, 1 or !r:r, 2 - ‘r:,& (4)
Various heat-conduction problems can be formulated for the double cylinder, depending on the boundary
condition at the end surface x =7.
1. Let it be supposed that an arbitrary temperature distribution is given at the upper end:
'a;x=l =f (f\}. (5)
A solutior of problem (2)-(5) can be found by the separation of variables [5]:
B, 1) = n}; [sinh urL
A . o {—x
X 3 () () Ry, (r) dr = sinh g, (6)
5 2
e R, ()
X jq(r) R, (r)dr ] ’
5 sinh S g(N RN dr
where yi;, represents the positive roots of the transcendental equation
B (1R T, (g0 Y g ()T, (i) Y (ko)1 Ty (1) —T o 00T, B0 (o —1) Yy ()}
1
(7)
H{Ves, 3 (fg) Yo (R} — T (Byu) Y (R )] Jy () — Jy (Rou) Iy (Rpe) (B — 1) Y, ()}
and we have put ky =2{/x, and k, =ry/ry. The eigenfunctions of the problem
{
| [‘]0 (kanu'n-) - ('On YO (kmu‘n” ‘IO (nu‘n 4 )v 0 < r < rl'
I s )
R, ()= ’l . (8)
’ ‘IO (ka}{n) [‘IO (p‘n 4 ) _mn YO (.u‘n L'—) ]’ rl < r < r'l'
{ ) 2 ry
where
— Bl ‘Io (Mn) - !’['n Jl (Mn)
v Bl Yo (}'Ln) —Wn Yl (un)
are orthogonal on the interval [0, r,y] with weight
90 = J rky,, 0<r </r1,
Lo, rp<r<r,. (9)

The given solution enables us to calculate the temperature distribution in a composite cylinder when the
temperature distribution is specified in each stage. This fact permits the use of an iterative procedure
for the calculation of the temperatures in a composite double cylinder.
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2. Let the upper end be thermally insulated. Now condition (5) is is superseded by the homogeneous
boundary condition of the second kind

oY |
o kO (10)

We find the solution by separation of variables:

w 7>
&, x) = \ ! .
i coshy, —- \ q(r) Ry (r) dr
; .
0

2

. coshy, [—x { gV R, (r)dr
if

Rn (_f), M (11)

where py, is determined from the {ranscendental equation (7) and the eigenfunctions R, (r) are evaluated
from relation (8). '

Under the condition Bi —0 the series converges so rapidly that only its first term needs to be retained.
The coefficient i is determined from the transcendental equation (7) by the perturbation method. A small
value of the criterion Bi corresponds to natural convective heat transfer in metals. The resulting solution
can be used for the analysis of a low-temperature piping system with the use of a thermal insulating
material,

3. The most interesting case occurs when convective heat transfer takes place at the upper end:
] o
! ~—741()x=l’0<”<"1’

. 1

a¢ | I
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0% femr | N
§

Bomps 1< Sy (12)

i

7.

The cylinder is assumed to be slender, i.e., the ratio of the radius ry to the length of the cylinder is con-
sidered to be a small parameter ¢. We find an asymptotic solution of the problem for small . Following
Dzhavadov [3], We represent the solution ¢ in the sum form

d=w—uv, . (13)
where v is a function of the boundary-layer type.

For the function w Eq. (1) assumes the following form with the introduction of dimensionless coor-
dinates r =r/ry, x =x/I:

1 d - Jw 0w
e — r —= 'T 82 — = 0, 14
r odr ( or ) ox* (14)
Now the boundary conditions (2), 4), and (12) are rewritten
av
wl-_, finite, AN Al ;
7 =1
A | - Ae w1 ;0<?<ka;
wr, =1, a‘“_ = %y, J?c:l
= X = i _ 15
: — Aewyp-, | kR, <r<l (19)
Ow 0w
wi= = wk_, ., B —— = ,
]r:ka‘ﬂ |.r=ka,".‘0 % or ?=ka—0 Y bt 0
where A€? = rya/x; = Bi; Ae =al/x,.
To find the function v we introduce the dimensionless coordinates
r . {—x
P = 7‘ 5y 5= p (16)
Then Eq. (1) is rewritten 2 2
2,
10 (0 dv )—i—~ a? :O( 0<p <l ) an
o do op ot 0<fi<e

and the boundary conditions acquire the form
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00 oy - —As*vlp:l’ UL’):O finite;
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The functions w and v are evaluated by different iterative processes. We refer to the process used to find
w as the outer expansion, and to the process for v as the inner expansion.
We begin the solution of the problem by finding the outer expansion. We represent the function w in
the form
W= W,y - eWy - BW, - L. (19)

Substituting the series (19) into Eq. (14) and the boundary conditions (15) and equating coefficients of like
powers of ¢, we arrive at the following problem for the determination of w, (we drop the bars over the

dimensionless variables):

Ll ()
r

or or
w0,
w,| __, finite, 0 == 0
Oir==0 dr r=1
” ! Jw, . Jw, |
Olresky—0 Or=kor0 2 Ty, rehg-0  Or ‘i:ka‘l'(l. 20)
After integration we have
wy = @0 (x). (21)
For the function wy, analogously, we obtain the following dependence on the longitudinal coordinate:
w, = @, (x). (22)
Now for the third term w, of the outer expansion the problem assumes the form
I 9 ’r dw, \ 4w,
r T or ( ar ) dx 23)
. ow -
W,,_, finite, 0r2 T Aw, |r—r;
w =] 0w, | __ Ow, .
thrt o S N T (24)

The integration of Eq. (23) subject to conditions (24) yields

dw, r* -
l{ — dx;’ (), 0 <k
@ =) dxw, 1 r ~ @2)
Il — S (), h, <1<,
where
_ ka d*w,
Cy =g (I — ) 8

The condition for solvability of problem (23)-(24) leads to the following equation for the determination
of Wg:
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Fu,
dx?
where m? = 2A /1—(1—k7\)k(21, because [1—(1— k)kg] > 0and A> 0.

— mfwy, =0,

Let wy(x) satisfy the following conditions with respect to x:
dw,
dx ;\‘=l

.z;)g lx:O = 1, = O.

The solution of this problem is given by the relation

— cosh m(l —x
“ (x) = cosh m _) )

(26)

@7)

(28)

The given solution corresponds to the temperamre-distribution in a rod with a thermally insulated

end surface [6]. It follows therefrom that for a small value of the Biot criterion the one-dimensional
approximation can be used for a double rod. An analogous result is obtained from (11) for the limiting

situation Bi —0,

For the function wy (x) we obtain an equation of the type (26) with the boundary conditions

 dey |
S dx x=l~qp

a1 lx:() = 0

where q; is to be determined later.

We now consider the iterative process for the function v. We represent v in the form

: v =€, + e, + ...
The equation for v, takes the form

1 @ pﬂ,_+6200 :0<0<.0<1
0<li <o

o o

and the boundary conditions are rewritten

op

A
9%
g

=q, m

t=0

v,
dp

Uy |p— finite, Uo!;»w -0,

dv,
Uof,;:;ea—o = Yolyp, 07 ks, ap

p=k,~—0

The eigenfunctions of this problem are orthogonal on the interval [0, 1] with weight

{ pky, 0 < p <k,
rO=1 ok <p<l.
The condition for solvability of problem (31)-(32) yields

kg

0 kg

whence
m— 2
g =— ?wo(l) =—

The solution for wj(x) can be represented in explicit form by means of the value found for q;:

w (%) = — 2 cosh’m

—k~5’0(1), 0<p <k,

Awy (1), k,<p < 1;

p=1
0y,

1 kg : i
5 oy - quldp+j ——,f , (1) phadp jAwoa)pdp —0,
M
5 %,

2 coshm ’

sinh mx.

(29)

(30)

(31)

(32)

33)

(34)

The function v, (0, ¢) is determined from Eq. (31) and the boundary conditions (32) by separation of

variables:
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k(1 — k) (L;‘_z —A)v %

Ttk
. %P, ) = — s B R (r) €7V0E, (35)
where com bl S
‘ Ryn = J4 (14,0), 0<p<k,
! Jo(1,0) Yy (1) — J; () Yo (40)
— ,R L = .0 n 1 R,
Ra0) i T (k) Yo () — T (1) Yo (k) To ko).
t k<<

{km(l ) B, (k)

Pvn

1
N, = gr(pmi(p)d.o _
b

-+ 7 kadd (k) (B — 1)

L4 Jo(ppk,) }
n? ['JO (Mnka) Yl (“’n) - Jl (un) YO (!J‘nka)]2
and p, represents the positive roots of the transcendental equation

[kl J1 (kau) YO (kmu') - J() (km ) Y (k )] Jl ("')

_ — 3, (o) 3, (o) (s — )Y, (1) = 0. (36)
To determine the function w, we need to analyze the following problem for the function wy:
RIS
r ar ar / 0)62
w 387
Wy, “finite, 6r4 » — Awy|,_;
dw, | Jw
) =@ o, E 4 — 4 .
. w4,|/=/za~—0 4ir:ka-7—0 A ar j,-zka_g or et 0 (38)
Taking Eqs. (25) into account, we rewrite Eq. (37) as follows:
Lo,
r Or ar
{ ) DI
dw, 7 _ dw,
, O0<<r <k,
l dx* dx? <
d'w, k2 rodw,  dw
o n—--0 .. 72k Jr<l.
i dt ke dit de TS ©9)
Integrating (39), we obtain
d@, r #E,
— — =22 Dlnrtw,(x), 0<<r <k,
dx* 64 dx* 4 4( )
17 4 2 1o 2
o= | LB L gyt L ’—(m ! _1)
4 dx* 64 2 dxt 2 k,
d% r? . v syl
— 'dx: I ~Dylnr Lwy(x), kb, <r<<t 40)

The temperature and heat-flux matching conditions stipulate the following relations between the constants:

4
Br(r) = By () — (1 — by S BB g
8 - dx*
dw, kL. . diw,
D= — dx22~§_( 1)“‘*‘{5(;31—1) 0_- 41)

The condition for solvability of the problem for w, permits us to derive a differential equation for the evalu-
ation of the function wy: :
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d*w,
dxz

— mw, %= Eccosh mi(1 — 1), @2)
where B

omom [ m k2 P
—,c—p.shmj[ﬁf’"z(l )3 (lnkﬁ )

A k; ]

3”‘ O 1);T Alnk; (1 k)

subject to the boundary conditions

dwy |
T bt T T 43)
The dimensionless heat flux ¢, has to be determined from the condition for solvability of the problem for-
the function v;.

The function vy(p, £) satisfies (31) and the boundary conditions

| Whlyeo =0,

£ A
- - h
du, ! ky, 2cosh2 sinhm, 0 <r <<k
% o a A smhml k - 1
l 2 cosh? m NN
dv
Ul fnite, Gpl L 0, vyl,_, finire,
o, dv
AN =0, ., . Ry —t =1 .
T e N (44)
the condition for solvability of the problem for v,
kg 1 kg p 1 :
g Phrg,do + g 0g,dp — j kyp - SR, S pa TSh Ty o
. : Ry 2 cosh®’m 2 cosh? m :
> :
determines the value of the dimensionless heat flux q,:
1 sinhm
%= 4 M otim’ (45)
Consequently, problem (42)-(43) can now be solved in explicit form for the determination of Wy:
- 1 I _sinhm .1 E ' '
w, = ——mP—— —— E }sinhmx — i —
2 oshm ( 2 ot )sm mx o xsinhm (1 — Xx). (4'16)

The next-higher terms of the expansions (19) and (30) can be computed analogously, where the bound-
ary conditions for the functions w;,4 are determined by the condition for solvabxhty of the corresponding
problems for the functions vj.

The final solution can be extended to small values of the parameter €. The given solution has the
singular feature that the dependence on the radius is felt only in the second-order terms in ¢. The problem
can therefore be regarded as one-dimensional with a small correction for the radial variation of the funda-
mental parameters. The proposed analytical method can also be extended to other cases of boundary con-
ditions. In particular, it can be used to solve the problem of the steady-state temperature distribution in
a double cylinder with nonideal contact between the inner and outer cylinders.

NOTATION
T is the absolute temperature;
X, r are the cylindrical coordinates;
) =»(T —TL) /(To—TL) is the dimensionless excess temperature;
Bi = oxry /2 is the Biot number;
o . is the heat-transfer coefficient;
A - is the thermal conductivity;
ry is the radius of the i-th cylinder;
1 is the height of the cylinder;
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q(r) is a weighting function;

Jo(z), J1(@), Yo(z), Yi(2) are Bessel functions of the first and second kind;
£ =19/l is the small parameter of the problem;
k, =1r1/r9, ky =21/Ae are dimensionless coefficients.
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